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Morphological features of snow crystals are analyzed on the basis of concepts of

a general crystallography, where point groups of in®nite order are possible. The

observations are ®rst formulated in a set of rules, leading to a macroscopic

growth lattice and to continuous growth boundaries. Both are brought in

connection with two-dimensional integral invertible transformations. Families of

boundaries are considered, labeled by a set of indices restricted by selection

rules and generalizing the law of rational indices. These properties are indicated

graphically on a sample of 12 natural snow crystals. Their geometric and

arithmetic properties are summarized in a table.

1. Introduction
General crystallography is characterized by the possibility of

point groups of in®nite order isomorphic to groups of integral

matrices (Janner, 2001b). These groups have never been

considered in crystallography because of the implicit

assumption that the symmetry group of a Euclidean object

(the crystal) is necessarily Euclidean. This need not be the

case. So, for example, the lattice of a hexagonal close packing

is invariant with respect to a point group of in®nite order

implying the ratio c=a � �8=3�1=2. This same point group

allows one to characterize in terms of symmetry elements the

octahedral and the tetrahedral sites of this close packing,

which, otherwise, require the speci®cation of a parameter

whose value is not ®xed by the corresponding Wyckoff posi-

tions.

This means that there are Euclidean structural properties

only expressible in terms of non-Euclidean symmetries. It is,

therefore, not surprising that these in®nite point groups occur

in nature more often than one would think. Their relevance,

however, is not generally recognized, because the implications

have been worked out only in very few special cases.

One ®nds one of these few cases in the morphology of snow

crystals. On the basis of the in®nite point group of an extended

space group leaving the structure of ice invariant, character-

istic hexagrammal scaling properties of snow ¯akes could be

recognized and interpreted (Janner, 1997). Another, comple-

tely different, case where a similar point group plays a role is

given by hexagonal nucleic acids in helical conformation

(Janner, 2001a). Again, the corresponding hexagonal mole-

cular forms reveal hexagrammal scaling properties. In these

cases, the molecular form is a polyhedron that encloses a

periodic unit of the secondary structure having, of course, a

hexagonal point-group symmetry. Moreover, atomic positions

of the molecular asymmetric unit of this Euclidean point

group could be related by elements of the larger point group.

Actually, the investigation of biomacromolecules started from

globular proteins with a given axial point-group symmetry,

where similar scaling properties have been recognized

(Janner, 1996). All this simply means that systems with a given

Euclidean point-group symmetry can have hidden a much

larger symmetry group.

The aim of this work is to point out, at a geometric level,

morphological properties of snow crystals, secondary structure

of nucleic acids and quaternary structure of proteins, which

are compatible with a crystallographic point group of in®nite

order, as it is conceptually possible in general crystallography.

This ®rst paper deals with snow crystals, developing further

a previous morphological investigation (Janner, 1997), here

denoted as Nive. Columnar snow crystals are disregarded and

the description of the planar ones is two dimensional. In x2,

the existence of a macroscopic hexagonal lattice � is pointed

out that underlies the morphology of snow ¯akes. Moreover,

different types of boundaries are observed, which connect

points of this lattice. In addition to the familiar ¯at boundary,

circular and hyperbolic ones also occur. General properties of

these boundaries are formulated as rules, deduced from the

morphology of a number of natural snow crystals. In x3, these

boundaries are analyzed in terms of point-group transforma-

tions leaving the lattice � invariant, but not necessarily the

underlying microscopic structure of ice. Indeed, these

boundaries can be characterized by automorphisms of the

lattice �, implying crystallographic restrictions on the

continuous linear transformations generating the observed

boundaries, with beginning and end at points of the lattice �.

This leads, in x4, to consideration of families of boundaries

sharing the same end points and to characterize morphological

features of snow crystals in terms of sets of integers (indices),

restricting by selection rules the possible (more stable) growth

boundaries. In fact, this formulation corresponds to an

extension of the law of rational indices. In x5, the geometric



and arithmetic properties of the growth boundaries observed

(and drawn) in the snow crystals selected for deriving the rules

of x2 are summarized in a tabular overview. Finally, mathe-

matical details on the derivation of the expressions in x3 can

be found in Appendix A.

As pointed out in the conclusion, this analysis does not

exhaust the rich complexity of snow ¯akes. In particular, only

the patterns of possible growth boundaries are considered

here among those characterized in Nive. The validity of

hexagrammal scaling is veri®ed in the new samples as well.

2. Observations

Before dealing with the mathematical aspects of a crystal

morphology based on the existence of an in®nite crystal-

lographic point group, new features are pointed out in terms of

phenomenological rules deduced from a number of snow

crystals. The sample (BW 1) that represents the simplest non-

trivial case has been redrawn from an article published in Bild

der Wissenschaft (Olovsson, 1985). All other snow ¯akes have

been reproduced (by courtesy of Dover) from the book of
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Figure 1
Snow crystals with hexagonal ¯at boundaries combined with hyperbolic ones through points of the growth lattice. The lattice points are indicated by
empty circles with a size re¯ecting the corresponding lattice±sublattice relation. The sample BW 1 has been redrawn from Olovssson (1985). The other
snow ¯akes have been taken from Bentley & Humphreys (1931) Snow Crystals (courtesy Dover). (a) BW 1, (b) BH 105.3, (c) BH 109.7 and (d) BH 27.3.
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Bentley & Humphreys (1931), and are labeled accordingly

(with BH followed by the page and the position numbers, as

already done in Nive). The attention is focused on geometric

properties of sets of observed boundary lines (see Figs. 1 to 5).

Rule 1. The same type of shape, which occurs as external

boundary of a crystal growth form, is also observed as an

internal pattern. Both are, therefore, denoted as growth

boundaries, independently of whether internal or external.

The regular hexagon is very frequent as a growth form or as

an internal pattern [see e:g: BH 27.3 of Fig. 1(d), BH 39.8 of

Fig. 2(b), and many other cases]. The hexagrammal form of

BH 145.7 can be seen as internal pattern in BH 141.11 (not

reproduced here, see Fig. 5 of Nive). Various hyperbolic

hexagons occur as external or internal boundaries in BW 1,

BH 105.3, BH 109.7, BH 27.3 and BH 39.8. The same circular

shape of BH 63.12 appears as internal in BH 33.5 and in

BH 145.12 as external and as internal boundary in a scaling

ratio 1 to 12.

Rule 2. There are three types of growth boundaries, char-

acterized by their curvature: ¯at ones with curvature zero,

hyperbolic ones with negative curvature and elliptic ones

(circular in particular) with positive curvature.

Flat faces (here given by straight segments) are the natural

thermodynamic equilibrium growth boundaries in crystals. In

snow, they normally appear as growth forms in facet-like

crystals and as skeletons in the dendritic ¯akes. I became

aware of the morphological importance of hyperbolic

boundaries while looking at the cover picture of an article by

Olovsson published in Bild der Wissenschaft (Olovsson, 1985).

There, a (nearly) regular hyperbolic hexagon appears toge-

ther, and in a scaling relation 2 to 1, with a Euclidean regular

hexagon. Moreover, both are connected by an underlying star

hexagon (see BW 1 in Fig. 1a). Many more examples followed

by looking at the book of Bentley & Humphreys (1931) (see

BH 105.3, BH 109.7, BH 27.3, BH 39.8 and even in the trian-

gular form of BH 205.10, not reproduced here). It was then

natural to search for snow crystals having boundaries with

positive curvature. A number of cases could easily be identi-

®ed involving circles (see BH 33.5, BH 145.12, BH 63.12 and

the central part of BH 39.8). The elliptic (non-circular) case

seems to be much rarer: there is one example in BH 145.7. It is

evident that these various possibilities arise from a combina-

tion of symmetry (the sixfold one, in particular) with condi-

tions of growth, which differ from ¯ake to ¯ake, or for a given

crystal, when changes occur in the growth conditions. This

remark should help to bridge the gap between the geometry of

growth boundaries with the physics of crystal growth.

Rule 3. Scaling relations among growth boundaries of a

given crystal can be expressed by means of a macroscopic

growth lattice. If several such lattices occur, they share the

same center and are in a lattice±sublattice relation, the smaller

elementary cell being observed towards the center.

This macroscopic lattice cannot be explained on the basis of

the lattice periodicity of the microscopic structure only. A

possible explanation involves two mechanisms, which are not

mutually exclusive. The ®rst one assumes an intermittent

growth, periodic in time, giving rise to a macroscopic peri-

Figure 2
In these snow crystals, in addition to the parabolic (¯at) boundaries and
to the hyperbolic ones, one observes elliptic boundaries in (a) BH 145.7
and circular ones in (b) BH 39.8 (courtesy Dover). The growth lattices are
indicated as in Fig. 1.



odicity in space. The second one is based on the existence of

the in®nite crystallographic point group leaving the ice

structure invariant, as shown in Nive, and requires two

singularities. A ®rst singularity, represented by the seed at the

beginning of the growth process, ®xes the distinguished center

invariant with respect to the point group (the center of the

snow ¯ake). A second singularity (possibly also a seed) gives

rise to a fairly large number of point-group-equivalent posi-

tions (say for other seeds), in®nite in principle but not in

practice, around the center. Apparently to allow growth, this

second singularity has to be on one of the hexagonal mirror

planes, equivalent either to mx or to my. Therefore, this

singularity can be taken to be at [1 0] position of a lattice

either in the same orientation of the microscopic lattice of the

symmetry translations, or turned by �=2 with respect to it. This

second explanation, adopted in Nive, allows the hexagrammal

scaling properties and other morphological features to be

interpreted. The existence of growth boundaries associated

with a concentration of impurities suggests that both growth

mechanisms are at work. This would also explain the

increasing of the elementary cell in a lattice±sublattice rela-

tion. A lattice point reached at a given stage of the growth

could represent a new singularity generating a larger lattice by

the point-group mechanism. Alternatively, the time scale of
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Figure 3
Snow crystals with circular boundaries centered at points of the growth lattice and with a radius given by a lattice vector: (a) BH 33.5, (b) BH 145.12 and
(c) BH 63.12 (courtesy Dover).
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the growth periodicity can be assumed to be proportional to

the size of the crystal already reached. One has, however, to

distinguish between two types of impurities: those giving rise

to seeds in the crystallization process and appearing as

singularities at points of the growth lattice, and all the other

impurities, which simply accumulate at the growth boundaries

(by the same mechanism as in a zone-melting experiment). At

present, all these considerations are conjectures only, even if

compatible with the empirical evidence.

In the examples of Figs. 1 to 5, the various growth lattices

are indicated by empty circles with a size suggesting the

lattice±sublattice relation. So for example in BH 39.8, the

central circular growth lines are associated with a ®rst lattice.

A second lattice arises at the corresponding extremal points

and leads to a regular hexagon, with vertices generating a third

lattice with hyperbolic boundaries, and a ®nal one de®ned

by the largest hexagon. The corresponding lattice±sublattice

relations are here in the ratios 1 :3 :6 :18 :24.

Rule 4. Morphological relevant growth boundaries have

piece-wise beginning and end at points of the growth lattice.

These lines are generated by linear transformations restricted

by crystallographic conditions implying that beginning and

end points are related by an automorphism of the growth

lattice and, accordingly, have origin at a lattice point (normally

the center).

Lattice automorphisms expressed with respect to a lattice

basis are invertible integral matrices, two-dimensional in our

case. Depending on the value of the trace n, they are hyper-

bolic (for jnj> 2), parabolic (for jnj � 2, if not the identity or

the total inversion) and elliptic (for jnj< 2), because the

corresponding automorphisms transform lattice points along

hyperbolas, straight lines or ellipses (and circles), respectively.

All the lines added to the snow ¯akes of Figs. 1 to 5 as an

idealization of the growth boundaries have been drawn

according to Rule 4. This rule is fairly restrictive. Indeed, the

only allowed rotation angles are 'n � arccos�n=2� in the

elliptic case and �n � coshÿ1�n=2� in the hyperbolic case.

Figure 4
Facet-like snow ¯akes with a morphology based on regular hexagons with
centers and vertices at points of the growth lattice. In the central region,
one observes hyperbolic and elliptic boundaries based on a ®ner growth
lattice. The branching points can be related to the occurrence of
degenerate hyperbolic boundaries. (a) BH 68.8 and (b) BH 114.8
(courtesy Dover).

Figure 5
The dendritic snow ¯akes are based on degenerate hyperbolic boundaries
with branching sites at points of the growth lattice and giving rise to a
hexagrammal structure. In the central region of the sample BH 167.8, one
®nds regular hexagons scaled according to a ®ner growth lattice. One
even sees hyperbolic boundaries turned by 30� with respect to the lattice
orientation, in the same way as observed in BH 27.3 of Fig. 1(d).



Additional restrictions apply, which need a more mathema-

tical approach to be discussed.

These lattice automorphisms, in general, do not leave the

microscopic structure of ice invariant, but the deviations are

macroscopically irrelevant, in the same way as in the

morphology of a crystal non-primitive translations are of

secondary importance only. Indeed, applying an auto-

morphism of the growth lattice to an arbitrary atomic position,

one gets a deviation (with respect to a space-group equivalent

position) that is always microscopically small, even if an

additional rotation by �=2 is required when the growth lattice

does not have the same orientation as the lattice of symmetry

translations.

3. Automorphisms of the growth lattice

In this section, a geometric characterization of growth

boundaries is given in terms of automorphisms of the hexag-

onal growth lattice �. The transformations considered are

expressed in the lattice basis a � fa1; a2g:
a1 � a0�1; 0�; a2 � a0�ÿ1=2; 31=2=2�; �1�

with components given in the orthonormal basis e � fe1; e2g
and a0 the macroscopic cell parameter. This means that � is

chosen in the x orientation. The lattice of symmetry transla-

tions has either the same or the alternative y orientation.

Rule 4 implies that the growth boundaries are piece-wise

generated by elements of the connected component of the

unity of the general linear group GL�2;R� of the real inver-

tible two-dimensional matrices. In this set, there are two

distinguished subsets of elements: the ones that leave the

beginning point invariant, and the lattice automorphisms that

transform the beginning to the end point. Both belong to the

subgroup GL�2;Z� of the invertible integral matrices of the

same dimension. As usual, R denotes the set of real numbers

and Z the rational integers. Attention will ®rst be paid to the

lattice automorphisms because they restrict the admitted

linear transformations and, accordingly, the growth bound-

aries satisfying crystallographic conditions.

In the basis a, one has:

A�a� � � �

 �

� �
2 GL�2;Z�;

det A � 1 and �� � � n>ÿ 2: �2�
The restrictions on the determinant and on the trace are

required because the corresponding linear transformation has

to belong to the connected component of the identity for

ensuring the continuity observed in the boundaries. It is

convenient to express the geometric properties of A as a

function of the three integers n, � and � ful®lling the condi-

tions:

� 6� 0; ��; �� � 1;  � ��nÿ ���ÿ 1�=� 2 Z: �3�
Accordingly, the lattice point [0 1] is transformed by A into

�� ��. The case � � 0 can be treated in the same way after

transposition because, for A not the identity or the total

inversion, � � 0 implies  6� 0. Morphologically, the parabolic

case is the most important, followed by the hyperbolic one and

then by the elliptic case, which mainly appears as the circular

one. These three cases will now be discussed.

3.1. Flat growth boundaries

A ¯at boundary connecting two points of the growth lattice

� belongs to a lattice line. Such a line is perpendicular to a

reciprocal-lattice vector k � �k1 k2� 2 ��, whose integral

components (here expressed in the dual lattice basis

a� � fa�1; a�2g) are the indices of the line. In three dimensions,

and without growth lattice, this is simply the law of rational

indices for ¯at crystal facets. In the case of a growth lattice,

however, there is a distinguished center (see Rule 3) and

straight lines passing, or not, through the center have a

different character. Those through the center represent in fact

degenerate hyperbolic transformations and will be discussed

in the next subsection, whereas the other lines are obtained

from parabolic transformations.

In two dimensions, a parabolic lattice automorphism P has

trace n � 2. It is convenient to express the other two matrix

elements � and � in terms of a lattice vector v � �v1 v2� 2 �.

With � � v1, � � 1� v2, one has:

Pv�a� � 1ÿ v2 v1

ÿv2
2=v1 1� v2

� �
; v1 6� 0; �4�

such that v1 and 1� v2 are relatively prime integers and v1

divides v2
2. As already mentioned, the case v1 � 0, which

implies v2 6� 0, can be treated in a similar way. Instead of (4),

one then has:

P0v�a� � 1� v1 ÿv2
1=v2

v2 1ÿ v1

� �
� 1 0

v2 1

� �
; v2 6� 0: �5�

A lattice point m � �m1 m2� (after identi®cation of lattice

points with lattice vectors) is then transformed by Pv into

another lattice point m0 along the invariant direction of v.

Indeed,

Pv�a�m � m� �1=v1��v1m2 ÿ v2m1� v � m0 2 �; �6�
and in particular

Pv�a� v � v; �7�
so that the line indices �k1 k2� are related to the invariant

vector v � �v1 v2� by

�v1 v2� � �k1 k2� � k1v1 � k2v2 � 0 �8�
as k is perpendicular to v. One can assume that k1 and k2 are

relatively prime integers, and one can take v1 � v0 k2 and

v2 � ÿv0 k1, with v0 the greatest common divisor of v1 and v2,

which is indicated as v0 � �v1; v2�. The corresponding set of

continuous parabolic transformations, generating a ¯at growth

boundary beginning at the lattice point m and ending at m0,
when expressed in terms of the line indices �k1 k2�, is given by:

P��a� � 1� �k1 �k2

ÿ�k2
1=k2 1ÿ �k1

� �
; k2 6� 0; �9�
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with 0 � � � v0. The case k2 � 0, and thus k1 6� 0, follows

after a transposition and one has correspondingly k1 � v2=v0,

k2 � ÿv1=v0.

Even if all line indices can occur, it does not mean that any

pair of lattice points lying on a given lattice line is a possible

begin±end pair of a growth boundary, because they have to be

related by a parabolic automorphism of the growth lattice.

Therefore, the crystallographic conditions imposed on ¯at

boundaries are more severe for crystal forms with growth

lattice than without, as in the normal crystal morphology.

3.2. Hyperbolic growth boundaries

Hyperbolic growth boundaries have beginning and end

points connected by an automorphism Ln, with trace n> 2,

transforming the lattice points along hyperbolic lines. In a

lattice basis, the corresponding matrix has integral entries and

there is an orthonormal basis e0, rotated with respect to the x

and y axes, allowing Ln to be expressed as an af®ne hyperbolic

rotation. In particular, one has [recall the conditions indicated

in (3)]:

Ln�a� �
nÿ � �

��nÿ ���ÿ 1�=� �y

� �
; �10�

Ln�e0� �
cosh�n �n sinh�n

sinh�n=�n cosh�n

� �
; �11�

with corresponding bases a and e0:

a1 � a0 e1

a2 � a0�ÿ 1
2 e1 � �31=2=2�e2�

e01 � e1 cos�n � e2 sin�n

e02 � ÿe1 sin�n � e2 cos�n:

�12�
The geometry of Ln follows from the real parameters �n (the

hyperbolic rotation angle), �n (the af®ne deformation factor),

�n (the rotation angle of the orthonormal system e0, which also

gives the angle formed by the symmetry axis of the hyperbola

with the x axis) and !n (the angle between the asymptotes of

the hyperbola) expressed in terms of the integral parameters

n, �, � of the automorph of the growth lattice. Details of the

computation are postponed to Appendix A. The general

expressions are:

�n � coshÿ1�n=2� �13�
�n �

2

31=2

z1 � r12

��n2 ÿ 4�1=2
�14�

�n � arctan�z2=�z3 � r12�� �15�
!n � arccos�z1=r12�; �16�

where (up to a sign of the square roots)

r12 � �z0n2 � ��ÿ 2���z0 � 1�n� z2
0 � 2z0 ÿ 3�2 � 1�1=2

z0 � �2 ÿ ��� �2

z1 � ��=2ÿ ��n� z0 � 1

z2 � �31=2=2���ÿ�� ��n� �2�ÿ ���ÿ 1�
z3 � 1

2 ���� ��nÿ 3�2 � 2z0 ÿ 1�: �17�

The growth boundaries with beginning and end points related

by the automorphism Ln are generated by continuous

�n-deformed hyperbolic rotations, which, in the rotated

orthonormal basis e0, take the simple form

L��e0� � cosh� �n sinh�
sinh�=�n cosh�

� �
; 0 � � � coshÿ1 n

2
:

�18�
The degenerate case of a hyperbola reduced to straight lines is

obtained in the limit n!1. If one keeps � and � ®nite, one

gets:

cos!1 �
�ÿ 2�

2��2 ÿ ��� �2�1=2
�19�

tan�1 �
31=2�ÿ�� ��

�� �� 2��2 ÿ ��� �2�1=2
: �20�

The corresponding growth boundary is along the two straight

lines that intersect at the center at an angle !1 and have a

bisecting line with slope given by �1. It is the ¯at boundary

case mentioned in x3.1, not due to a parabolic transformation.

3.3. The elliptic and circular growth boundaries

Lattice automorphs Rn of ®nite order 3, 4 and 6, with

corresponding trace value n � ÿ1; 0; 1, generate elliptic (and

circular) growth boundaries. Their geometric characterization,

given by essentially the same formulas as in the hyperbolic

case, can now be described as an af®ne deformed circular

rotation:

Rn�e0� � cos 'n ÿ�n sin 'n

sin 'n=�n cos 'n

� �
�21�

with

'n � arccos�n=2�; �22�
�n �

2

31=2

z1 � r12

��4ÿ n2�1=2
; �23�

�n � arctan
z2

z3 � r12

�24�

and r12, z0, z1, z2 and z3 are the same expressions as in the

hyperbolic case.

The elliptical growth boundaries are now generated by the

�n-deformed circular rotation:

R'�e0� � cos ' ÿ�n sin '
sin '=�n cos '

� �
; 0 � ' � arccos�n=2�:

�25�
The circular boundaries follow for the special case �2

n � 1,

which is equivalent to the condition r12 � 0, as derived in

Appendix A. The symmetry axes of the ellipse are again along

the orthonormal basis vectors e01 and e02 and the ratio between

the two principal axes is given by �2
n. For a hexagonal growth

lattice, as assumed in this work, circular boundaries only occur

for n � �1, i.e. for a threefold or a sixfold rotation. The

converse is not true because not all automorphs with n � �1

are circular rotations.



4. Indexing growth boundaries

Indexing is a characterization of a geometric object, like a

Bragg diffraction spot or a crystal lattice plane, by a set of

rational integers (the indices). One knows how to label ¯at

facets of crystal forms by rational indices. The growth

boundaries discussed so far generalize these forms. The

problem is to ®nd a simple characterization in terms of a

suitable set of integers (the new indices of the face), for the

hyperbolic, the parabolic and the elliptic boundaries as well.

The solution presented follows from mathematical and from

physical considerations.

From a physical point of view, points of the growth lattice

act as pinning centers by the formation of moving boundaries

during the growth process. As ¯at (parabolic) boundaries

correspond to the normal ¯at-facet case, it is natural to start

from these and to consider hyperbolic and elliptic boundaries

as a deformation of parabolic boundaries sharing the same

beginning and end lattice points. From a mathematical point of

view, such a transformation corresponds to a homotopy, with

basis the beginning and the end points, and restricted by lattice

automorphs with a varying value of the trace. Both ways of

looking lead to the concept of a family of growth boundaries

(and of automorphs).

4.1. Families of boundaries. Selection rules

A given family of growth boundaries is ®xed by two lattice

points P�a� � �p1 p2� and Q�a� � �q1 q2� 2 � representing the

end points of the boundary, where a � fa1; a2g indicates the

hexagonal lattice basis with respect to which the integral

components p1; p2; q1; q2 are expressed. Only admitted are

pairs of points transformed into another by a lattice auto-

morphism A. The concept of family arises because, if for the

given pair P;Q one automorph exists (as it is assumed), there

is also an in®nite set of them. To begin with the notation for a

family Fh (where the subscript refers to hexagonal), one has:

Fh : P�a� � �p1 p2� !
A

Q�a� � �q1 q2� A�a� 2 GL�2;Z�:
�26�

A growth boundary is not oriented: beginning and end points

are only distinguished by the automorph A, and are inter-

changed if one takes Aÿ1.

Let us consider the lattice vector v � �v1 v2� connecting

beginning with end: v � Q�a� ÿ P�a�. As already discussed in

the parabolic case, there is then a reciprocal-lattice vector

k � �k1 k2� 2 �� perpendicular to v:

k � v � k1v1 � k2v2 � 0: �27�
Without restriction of generality, one can assume that the

integral components of k are relatively prime: �k1; k2� � 1. So

a family ®xes a reciprocal-lattice vector k, common to all

growth boundaries of the family. The converse is not true. First

of all, a given k neither ®xes the lattice line (its orientation

only) nor the pair of beginning±end points on the line.

Furthermore, there are pairs of lattice points not connected by

any automorph. The automorphs belonging to a given family

have a different trace, which takes an integral value n between

ÿ2 and1. Therefore, in a family one always ®nds an in®nite

number of hyperbolic automorphs (for 2< n<1), but at

most one parabolic automorph (if n � 2 is a solution) and no

more than three elliptic ones (requiring ÿ2< n< 2), giving

rise to the corresponding crystallographic admitted growth

boundaries of the family, which is a discrete set labeled by n.

The asymptotic value n!1 is neither crystallographic nor

physical. The largest experimentally observed values are

n � 5000. In the drawings of Figs. 1 to 5, smaller values have

also been adopted, because in the asymptotic case it is only the

order of magnitude of n that matters.

The automorph A is a discrete transformation, whereas a

boundary is continuous and generated by continuous trans-

formations. For the parabolic, hyperbolic and elliptic cases,

they are respectively indicated in equations (9), (18), (25).

These relations are implicitly implied when a family is indi-

cated as in (26). Few families are morphologically important.

In the 12 examples of snow ¯akes shown in Figs. 1 to 5, only

the following ®ve families occur (up to a doubtful central

pattern of BH 114.8, included in Table 1) together, of course,

with those obtained by conjugation with the hexagonal point

group, as indicated in Fig. 6. In these families, the beginning

and end points are on hexagonal mirror planes and this

ensures that the corresponding 6mm symmetric boundaries

form close patterns. These families are:

1Fh : �1 0� ! �1 1�; k � �1 0�: �28�

An�a� �
1 nÿ 2

1 nÿ 1

� �
; ÿ2< n<1; tan �n � 1=31=2;

hyperbolic : 2< n<1; �n �
31=2�nÿ 2�1=2

�n� 2�1=2
;

cos!n � 1
2

nÿ 4

nÿ 1
; !1 � �=3;

elliptic : ÿ 2< n< 2; �n � ÿ
31=2�2ÿ n�1=2

�n� 2�1=2
;

parabolic : n � 2; P�e� �
1
2 ÿ1=�2� 31=2�

31=2=2 3
2

 !
:

This family is the most important. It is the only one that

includes the regular hexagon, obtained for n � 2. Therefore,

the appearance of a hexagon in the patterns of a snow ¯ake

®xes the orientation of the growth lattice (which in this paper

is in the x orientation), but not necessarily in the same

orientation as the underlying microscopic lattice, which could

possibly have the alternative y orientation, as discussed in x2.

Hexagonal boundaries allowed by this family are shown in Fig.

6. The regular hyperbolic hexagon (for n � 4) characterized

by edges intersecting at an angle of 60� instead of the usual

120�, and obtained from an automorph belonging to the point

group of the ice crystal, also occurs in the family 2Fh with the

alternative orientation.

2Fh : �1 �1� ! �2 1�; k � �2 �1�: �29�
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An�a� �
2m� 1 2mÿ 1

m� 1 m

� �
; n � 3m� 1; tan�n � 0;

hyperbolic : 2< n<1; �n �
�3mÿ 1�1=2

�m� 1�1=2
;

cos!n � 1
2 �mÿ 1�=m; !1 � �=3;

elliptic : ÿ 2< n< 2 �n � ÿ1; circle;

parabolic : forbidden:

This family describes hexagonal boundaries in an orientation

turned by 90� with respect to the ®rst family but, in the present

case, in addition to the general selection rule ÿ2< n<1, the

possible growth boundaries are restricted by the condition

n � 3m� 1; m 2 N; �30�
where N denotes the set of natural integers 0, 1, 2, . . . . The

circular boundary (for n � 1) is common to 1Fh and 2F2,

whereas the regular hexagon is here forbidden. The validity of

this last selection rule can be veri®ed easily. Indeed, in the

more than 2000 snow ¯akes reproduced in the book by

Bentley & Humphreys (1931), I could not ®nd any snow

crystal with hexagons in the two orientations allowed by the

point group 6=mmm of ice. This observation was con®rmed by

looking at the book Snow Crystals issued by the Japanese

Snow Museum, where many very nice microphotographs of

natural snow crystals taken by Y. Furukawa are reproduced

(Furukawa & Kobayashi, 1991). The same cannot be said of

hyperbolic boundaries. The two alternative orientations can

occur in the same snow crystal, as it follows theoretically by

considering 1Fh and 2Fh, and as one can see empirically, by

looking at Figs. 1 to 5. In the collection of Furukawa's

micrographs, one ®nds a very nice example where the

dendritic branches are consistent with both orientations

appearing together and give the impression of 12-fold

symmetry.

3Fh : �1 0� ! �2 1�; k � �1 �1�: �31�

An�a� �
2 2nÿ 5

1 nÿ 2

� �
; ÿ2< n<1;

tan �n �
31=2�nÿ 3�

3nÿ 5� 2D1=2
; D � 3n2 ÿ 12n� 13;

hyperbolic : 2< n<1; �n �
3nÿ 8� 2D1=2

31=2�n2 ÿ 4�1=2
;

cos!n �
1

2

3nÿ 8

D1=2
; !1 � �=6

elliptic : ÿ 2< n< 2; �n �
3nÿ 8� 2D1=2

31=2�4ÿ n2�1=2
;

parabolic : n � 2; P�e� �
3
2 ÿ1=2� 31=2

31=2=2 1
2

 !
:

The corresponding enantiomorphic family, with expressions

obtained by a mirror transformation m, is given by

m3Fh : �1 0� ! �1 �1�; k � �0 1�: �32�

The possible hexagonal boundaries of these two families are

shown in Fig. 6. In the snow crystal BH 145.7 of Fig. 2(a), the

parabolic case (n � 2) forms the external boundary, whereas

the elliptic boundaries, given by n � ÿ1, appear as the central

pattern.

4Fh : �1 0� ! �0 1�; k � �1 1�: �33�

An�a� �
0 ÿ1

1 n

� �
; ÿ2< n<1; tan�n � ÿ1=31=2;

hyperbolic : 2< n<1; �n � ÿ
31=2�n� 2�1=2

�nÿ 2�1=2
;

cos!n � 1
2

n� 4

n� 1
; !1 � 2�=3;

elliptic : ÿ 2< n< 2; �n � ÿ
31=2�2� n�1=2

�2ÿ n�1=2
;

parabolic : n � 2; P�e� � ÿ 1
2 ÿ3� 31=2=2

31=2=2 5
2

 !
:

5Fh : �1 �1� ! �1 2�; k � �1 0�: �34�

An�a� �
m mÿ 1

2m� 1 2mÿ 1

� �
; ÿ2< n<1;

tan �n � 1=31=2; n � 3mÿ 1;

hyperbolic : 2< n<1; �n �
�mÿ 1�1=2

�3m� 1�1=2
;

cos!n � ÿ
1

2

m� 1

m
; !1 � 2�=3;

elliptic : ÿ 2< n< 2; �n � ÿ1 circle;

parabolic : n � 2; P�e� � ÿ 1
2 ÿ31=2=2

3� 31=2=2 5
2

 !
:

These last two families are in an alternative orientation, like

the ®rst two families. Again, 5Fh, in the y orientation, implies

stronger selection rules than 4Fh, owing to the additional

condition for the trace n � 2 mod 3. The most interesting type

of boundary belonging to these families is the star hexagon,

obtained for n � 2. The possibility of star hexagons in the two

alternative orientations is consistent with the two types of

hexagrammal scaling relations of the mid-edge and of the

vertex type, respectively, discussed in a previous work (Janner,

2001a). In snow crystals, one ®nds many cases with a star

hexagon belonging to 5Fh, and apparently not those oriented

as in 4Fh. Perhaps this fact is related to the absence of hexa-

gons in the y orientation, as pointed out above.

4.2. Main and satellite boundaries

All boundaries considered so far are centered at the origin

of the overall sixfold point symmetry of the snow crystal.

There are other boundaries as well. Typically in dendritic snow

crystals, one also ®nds branching points outside the origin (see

for example BH 167.8) and in facet-like crystals one observes

off-center regular hexagons (see BH 68.8 and BH 114.8).

These observations lead to a distinction between main



boundaries and satellite boundaries, having their respective

centers at a lattice point coinciding, or not, with the origin. The

nomenclature has been taken over from crystal diffraction.

Satellite growth boundaries differ from the main ones in

two respects:

(i) by a shift of origin of the family of possible boundaries

by a vector of the growth lattice;

(ii) by the non-shifted hexagonal symmetry applied to the

boundaries of the shifted family.

The samples chosen in Figs. 3 and 4 show that satellite

boundaries sometimes have centers at end points of occurring

main boundaries (BH 33.5, BH 114.8, BH 167.8), but some-

times the centers are not related to visible morphological

features, even if still belonging to the growth lattice (BH 63.12,

BH 145.12).

Satellite boundaries seem to be more restricted than the

main boundaries. One mainly ®nds circular, hexagonal and the

hyperbolic degenerate ones. Perhaps this is only because it is

easier to visualize the corresponding centers in these cases

than in the other ones.

5. Survey

A survey of the growth boundaries of the 12 snow crystals of

Figs. 1 to 5, drawn on the corresponding samples according to

the present approach, is given in Table 1. Indicated are, for

each sample, the family, the indices and other characteristics.

6. Conclusions

The present geometric investigation represents a further step

towards a physical understanding of the morphology of snow

crystals. Three main results can be summarized as follows:

(i) The existence of a macroscopic hexagonal lattice (the

growth lattice) gives rise to pairs of lattice points pinning the

ends of observed continuous patterns (the growth bound-

aries). The lattice points are probably associated with crys-

tallization seeds, and the boundaries are considered to

represent crystal surfaces at stationary steps during growth,

favoring an accumulation of impurities.

(ii) The discrete and crystallographic character of the

growth boundaries is expressed in terms of integral invertible

two-dimensional matrices (automorphs of the growth lattice),

allowing the boundaries to be labeled according to a set of

rational indices.

(iii) Boundaries having a common pair of end points form a

family and are restricted by selection rules for their indices. In

the case of regular hexagons, only one of the two orientations

allowed by the point group 6=mmm can occur in a given snow

single crystal.

It is, however, not the case that all snow crystals grow

according to these rules. Many more irregular snow ¯akes

exist and are observed, in particular in the dendritic case.

Possibly, the concentration of the type of impurities giving rise

to seeds and responsible for the formation of a growth lattice

plays a crucial role. The present analysis, based on more

general crystallographic principles than those usually

admitted, allows one to recognize a hidden order in what, at

®rst, appears as purely accidental.

APPENDIX A

This Appendix indicates how the formula of the hyperbolic

and the elliptic cases have been derived. Starting from the

automorph

A�a� � nÿ � �
��nÿ ���ÿ 1�=� �

� �
; n; �; � 2 Z; �35�

satisfying the conditions given in equation (3), one determines

the eigenvectors:

v� � �a1 � ÿ
n

2
� �n

2 ÿ 4�1=2

2
� �

� �
a2 � x� e1 � y� e2: �36�
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Figure 6
Shown are the most important families of indexed hexagonal growth
boundaries. The boundaries belonging to a given family (in bold) share
their beginning and end at points of the growth lattice and are labeled by
the trace of the lattice automorph transforming this pair of points into one
another along the corresponding boundary line. The possible integral
values of the trace are restricted by selection rules that re¯ect
crystallographic conditions.
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The corresponding eigenvalues are:

�� �
n

2
� �n

2 ÿ 4�1=2

2
: �37�

The orientation of the rotated orthonormal basis e0 is given by

tan�n �
x�yÿ � xÿy�

x�xÿ ÿ y�yÿ � r�rÿ
� z2

z3 � r12

; �38�

with

�n � ��� � �ÿ�=2; tan �� � y�=x�;

r� � �x2
� � y2

��1=2; r12 � r�rÿ �39�
and z0; z1; z2; z3 are as in equation (17). From the scalar

product v� � vÿ=r�rÿ, one derives the angle !n between the

eigenvectors.

For n2 > 4, one ®nds:

x�xÿ � y�yÿ
r�rÿ

� ��=2ÿ ��n� z0 � 1

r�rÿ
� z1

r12

� cos!n: �40�

This angle is related to the af®ne deformation factor �n by

�n �
1� cos!n

sin!n

� r12 � z1

r12 ÿ z1

� �1=2

; �41�

which, by using the relation �r2
12 ÿ z2

1�1=2 �
�31=2=2���n2 ÿ 4�1=2, becomes equivalent to equation (14).

Correspondingly, for n2 < 4, one has x�xÿ � y�yÿ � r�rÿ,

implying z1 � r12, so that

�z2
1 ÿ r2

12�1=2 � �31=2=2���4ÿ n2�1=2; �42�
leading to the af®ne deformation factor for the elliptic case:

�n �
2

31=2

z1 � r12

��4ÿ n2�1=2
� z1 � r12

z1 ÿ r12

� �1=2

: �43�

In particular, the circular case is characterized by the relations

�2
n � 1 () r12 � ÿr12 � 0: �44�

Thanks are expressed to B. Souvignier for valuable remarks

and suggestions and to Annalisa Fasolino for stimulating

discussions.

Table 1
Survey of the indexed boundaries of the snow crystals of Figs. 1 to 5; M and S indicate the main and satellite boundary type, respectively.

Sample Family Basis End points (center) Unit(s) Trace Type Shape

BW 1 1Fh a [1 0] ± [1 1] ([0 0]) u = 1 n = 2 M Hexagon
u = 2 n = 5 M Hyperbola

BH 105.3 1Fh a [1 0] ± [1 1] ([0 0]) u = 1, 2, 3 n = 2 M Hexagons
u = 8 n = 12 M Hyperbola

BH 109.7 1Fh a [1 0] ± [1 1] ([0 0]) u = 1, 2, 4, 5, 6 n = 2 M Hexagons
u = 12 n = 5 M Hyperbola

n = 200 M Hyperbola
BH 27.3 1Fh a [1 0] ± [1 1] ([0 0]) u = 2, 3, 4 n = 2 M Hexagons

u = 2 n = 300 M Hyperbola
2Fh a [1 �1] ± [2 1] ([0 0]) u = 1 n = 40 M Hyperbola

u = 2 n = 4 M Hyperbola
BH 145.7 3Fh a [1 0] ± [2 1] ([0 0]) u = 1 n = ÿ1 M Ellipse

u = 6 n = 2 M Straight line
u = 6 n = 2000 M Hyperbola

BH 39.8 1Fh a0 = a=6 [1 0]0 ± [1 1]0 ([0 0]) u0 = 1 n = 1 M Circle
a [1 0] ± [1 1] ([0 0]) u = 1, 4 n = 2 M Hexagons

u = 3 n = 8 M Hyperbola
u = 4 n = 2000 M Hyperbola

a0 = a=6 [1 0]0 ± [1 1]0 ([0 2]0) u0 = 1 n = 1 S Circle
BH 33.5 1Fh a [1 0] ± [1 1] ([0 0]) u = 2, 5 n = 2 M Hexagons

1Fh a [1 �1] ± [2 1] ([2 0]) u = 1 n = 1 S Circle arc
BH 145.12 1Fh a [1 0] ± [1 1] ([0 0]) u = 1 n = 3, 5 M Hyperbolas

4Fh a [4 0] ± [3 1] ([3 0]) u = 1 n = 4000 S Hyperbola
1Fh a0 = a=3 [4 �4]0 ± [8 4]0 ([8 0]0) u0 = 4 n = 1 S Circle arc

BH 63.12 1Fh a [1 0] ± [1 1] ([0 0]) u = 1, 3 n = 2 M Hexagons
2Fh a [1 �1] ± [2 1] ([0 0]) u = 1 n = 1 M Circle
1Fh a1 = 3a [1 �1]1 ± [2 1]1 ([2 0]1) u1 = 1 n = 1 S Circle arc

BH 68.8 1Fh a0 = a=3 [1 0]0 ± [1 1]0 ([0 0]) u0 = 1, 3 n = 2 M Hexagons
5Fh a [1 �1] ± [1 2] ([0 0]) u = 1 n = 2 M Star hexagon
2Fh a [2 �1] ± [3 1] ([1 0]) u = 1 n = 2000 S Hyperbola
4Fh a [3 1] ± [1 3] ([1 1]) u = 1 n = 2000 S Hyperbola

BH 114.8 1Fh a0 = a=2 [1 0]0 ± [1 1]0 ([0 0]) u0 = 1 n = 2 M Hexagon
a [1 0] ± [1 1] ([0 0]) u = 1, 2 n = 2 M Hexagons

5Fh a [1 �1] ± [1 2] ([0 0]) u = 1 n = 2 M Star hexagon
± a0 = a=9 [3 2]0 ± [3 1]0 ([0 0]) u0 = 1 n = 1,7 M Circle-hyperbola
2Fh a [2 �1] ± [3 1] ([1 0]) u = 1 n = 2000 S Hyperbola
4Fh a [3 1] ± [1 3] ([1 1]) u = 1 n = 2000 S Hyperbola

BH 167.8 1Fh a [1 0] ± [1 1] ([0 0]) u = 1, 2, 3 n = 2 M Hexagons
2Fh a0 = a=2 [1 �1]0 ± [2 1]0 ([0 0]) u0 = 1 n = 6001 M Hyperbola
4Fh a1 = 3a [2 1]1 ± [1 2]1 ([1 1]1) u1 = 1 n = 2000 S Hyperbola

a1 = 3a [3 2]1 ± [2 3]1 ([2 2]1) u1 = 1 n = 2000 S Hyperbola
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